
Just enough complex geometry to be dangerous

Abstract

There have been quite a few talks on both the analysis and algebra side about

complex manifolds lately, as such this talk will give an introduction to the topic with

a focus on the big ideas in play. To focus more on the big ideas, I will take a broad

and shallow approach, avoiding most technicalities. I will also try to highlight the rich

interplay between the analytic and algebraic aspects of the theory, with perhaps a bias

towards the algebraic side.
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Main claim: Complex geometry is interesting because there’s a rich interplay between the

two perspectives of algebra and analysis!

2 Complex manifolds

Central objects of study: Complex manifolds/complex analytic spaces

Question: What is a complex manifold?

This turns out to be a bit of a hard question with some subtlety!
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Näıve answer: A complex manifold is a topological space covered by charts such that

the transition functions U ⊂ Cn → V ⊂ Cn are holomorphic.

The problem is that this is a lot of information to check at once, and it turns out it’s

better to define it as a real manifold with some extra structure.

Better answer: A complex manifold is a real 2n-dimensional manifold equipped with

an “integrable almost complex structure.”

Which begs the question: What does that mean?

2.1 Some technical nonsense

For those not interested, feel free to tune out, but there is a bit of subtlety here.

Definition 1. Let X be a real 2n-dimensional manifold. An almost complex structure

on X is an endomorphism

I : TX → TX

such that I2 = −1. A manifold equipped with an almost complex structure, (X, I), is called

an almost complex manifold.

The reason this is called an almost complex structure is because this I isn’t always

induced from a complex manifold using that holomorphic transition function sense, and so

it doesn’t always give us an honest to goodness complex manifold. To fix this, we will need

some extra work.

Given our tangent bundle TX on X, we can tensor with C to get TX ⊗R C = TCX, and

we can extend I to be an endomorphism on TCX. Since I2 = −1, this means that I has

eigenvalues +i and −i, and we can break up TCX into eigenspaces:

TCX = T 1,0X ⊕ T 0,1X

where T 1,0X is the i eigenspace and T 0,1X is the −i eigenspace. We will call T 1,0X the

holomorphic part and T 0,1X the antiholomorphic part. We can think of T 1,0X as being

(locally) spanned by
∂

∂z1
, . . . ,

∂

∂zn
and the antiholomorphic part as being spanned by

∂

∂z1
, . . . ,

∂

∂zn
.

We will call T 1,0X = TX the complex tangent bundle of X.

Definition 2. An almost complex structure I on X is called integrable if [TX , Tx] ⊂ TX .

One should think of this condition as what happens in the Frobenius Theorem, where

here, the tangent vectors ∂zi integrate to give you holomorphic coordinates zi.

TECHNICAL PART OVER
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3 Kähler manifolds

Now the the whole world of complex manifolds is very scary, so we will focus for the rest of

the talk on the best kind of manifold (I mean this without reservation): Kähler manifolds.

Definition 3. A complex manifold (X, I) is called Kähler if there exists a symplectic form

ω on X such that

g(−,−) = ω(−, I−)

is a symmetric nondegenerate bilinear form—i.e. a metric on X. ω is called the Kähler

form.

Here symplectic form means an alternating form ω : TX ⊗ TX → TX that is nondegen-

erate, which means for any v ∈ TpX we have that ω(v,−) is an isomorphism TpX → TpX,

and closed, i.e. dω = 0.

Remark. There are many equivalent definitons of Kähler manifolds, which I won’t get into.

Example 1. Cn with its usual symplectic form is a Kähler manifold. For those unfamiliar:

Cn ≃ R2n has real coordinates x1, . . . , xn, y1, . . . , yn with zi = xi + iyi and the symplectic

form here is
∑

dyi ∧ dxi.

Example 2. This is the most important example. Pn(C) has a Kähler form called the

Fubini-Study form. It’s given locally as

ω =
1

2πi
∂∂ log

(
1

1 +
∑

i |zi|2

)
,

where here ∂, ∂ are the Dolbeaut operators:

∂f =
∑
i

∂f

∂zi
dzi and ∂f =

∑
i

∂f

∂zi
dzi.

The fact that Pn(C) is Kähler is actually very important! Let X be a smooth projective

variety (over C), i.e. X ⊂ PN(C) is the vanishing locus of some homogeneous polynomials

{Fi(x0, . . . , xN)}, and we require the locus to be a complex manifold (smoothness condition).

Now we can pullback along the inclusion X ↪→ Pn(C) to give X the structure of a Kähler

manifold, so we have that every smooth projective variety is Kähler! If you’re an algebraic

geometer, this makes you very happy.

Big question: When is a Kähler manifold projective?

We have one partial answer due to Kodaira. As setup, note that since ω, the Kähler

form, is closed, we have that [ω] ∈ H2(X,C).

Theorem 1 (Kodaira Embedding Theorem). Let X be a compact Kähler manifold with a

Kähler form ω. If [ω] ∈ H2(X,C) is an integral cohomology class, i.e. in this special case

we can think of it as living in H2(X,Z) ⊂ H2(X,C), then X is projective.
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4 Just a bit of Hodge theory

When X is Kähler, the cohomology of X decomposes in a particularly nice way:

Hk(X,C) =
⊕

p+q=k

Hp,q(X).

This decomposition is called the Hodge decomposition. Here Hp,q(X) are forms of the

form

α dzi1 ∧ dzi2 ∧ . . . ∧ dzip ∧ dzj1 ∧ dzj2 ∧ . . . ∧ dzjq ,

i.e. forms with p dz’s and q dz’s. For the algebra pilled, there is also another description

using cohomology:

Hp,q(X) ≃ Hq(X,Ωp
X),

where here ΩX is the sheaf of (holomorphic) differential forms on X and Ωp
X =

∧pΩX .

The main takeaway here is that these Hp,q’s form extra invariants of Kähler manifolds,

which one would like if one is interested in classification questions. The numbers hp,q =

dimHp,q(X) are called the Hodge numbers and they are often displayed in what’s called the

Hodge diamond:

hn,n

hn,n−1

. .
.

hn,1

hn,0

hn−1,0

. . .

h1,0

h0,0
h0,1

. .
.

h0,n−1
h0,n

h1,n

. . .
hn−1,n

Example 3. A big example of application of Hodge theory came from Clemens and Griffith

ca. 1972. They used Hodge theory to show that cubic 3-folds, i.e. X ⊂ P4(C) defined by the

vanishing of a degree 3 homogeneous polynomial F (x0, x1, x2, x3, x4), are not bimeromorphic

to P3(C).

5 More explicit relations to algebraic geometry

I should justify why I said complex geometry is so closely relate to algebraic geometry.

Theorem 2 (Chow). If X is a compact complex manifold with a closed embedding X ↪→
PN(C), then X is a projective variety.

What this means then is that studying projective complex manifolds is really just study-

ing algebraic geometry using these different tools! And in fact, one can actually say more in

this direction.
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5.1 Serre’s GAGA

Suppose X is a complete variety over C. What this means is that X is a reduced scheme of

finite type (maybe also ask irreducible) over C such that the structure morphismX → SpecC
is proper. The set X(C) = Hom(SpecC, X) (whatever this means [really means the closed

points of X]) has the structure of a compact complex analytic space. Here, complex analytic

space means that locally, it looks like the vanishing locus of some holomorphic functions

defined on an open subset of Cn. We call this space Xan because we can give it the standard

Hausdorff topology, which is very different from what one can get from the Zariski topology.

Now, a priori, X and Xan look like very different objects. But Serre’s GAGA states

roughly that

• Morphisms Xan → Y an are the same as morphisms of schemes X → Y .

• More importantly: Coherent analytic sheaves over Xan are the “same” as coherent

sheaves overX, in the sense that the sheaves are the same, the morphisms of sheaves are

the same, the exact sequences of sheaves are the same, and amazingly the cohomology

of these sheaves are the same!

To really hammer home how crazy this statement is, just think about vector bundles:

In algebra land: In complex geometry land:

In the Zariski topology, open sets are

absolutely massive!

Small open sets are allowed, for exam-

ple one can have ε-balls in the complex

topology.

There are very few algebraic functions:

they’re all defined by polynomials, so

there shouldn’t be too many possible

transition maps

There are seemingly more holomorphic

functions allowed than just polynomi-

als, so we seem to be able to have more

transition functions

From this, we should really expect there to be a lot fewer algebraic vector bundles than

holomorphic vector bundles. But actually, by GAGA, they are the same and they even have

the same cohomology!
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