
Notes on quantum cohomology

Xingyu Cheng

1 Cohomology ring of the Graßmannian

These notes are my attempts to understand quantum cohomology, specifically for that case

of Gr(r, n) the Grassmannian of rank r subspaces of Cn. So first we look at the regular

cohomology ring of the Grassmannian X = Gr(r, n). It is well known that the cohomology

ring H∗(X,Z) is generated by Schubert cells Ωλ for λ a partition of the square with r×(n−r)

blocks, i.e. partitions are thought of as Young tableaux. For example, lets take the simplest

case of Gr(2, 4). So here Schubert cells are parametrized by Young diagrams of the 2 × 2

box.

So here all the possible Schubert cells are

• (1, 0) ,

• (2, 0) ,

• (1, 1) ,

• (2, 1) ,

• (2, 2) .

These partitions λ translate to Ωλ in the following way. Let F• = F1 ⊂ F2 ⊂ . . . ⊂ Fn =

Cn be a flag on Cn. The Schubert cell parametrized by λ is defined to be

Ωλ(F•) = {V ∈ Gr(r, n) | dim(V ∩ Fn−r+i−λi
) ≥ i, ∀1 ≤ i ≤ r}.
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Alternatively note that each Schubert cell is defined by a path from the top right of the

r× (n− r) rectangle to the bottom left. We can define Ωλ(F•) to be subspaces V ∈ Gr(r, n)

such that dim(V ∩ Fi) is greater than or equal to the row you are on after taking i steps in

the mentioned path. These two definitions are equivalent.

Now the Schubert calculus is determined basically by the Pieri and Giambelli formulas.

The Giambelli formula gives us a presentation of the Schubert class Ωλ as a determinant

Ωλ = det(Ωλi+j−i)1≤i,j≤r.

And then the Pieri formula states

Ωi · Ωλ =
∑

Ων

where ν ranges over all partitions that can be obtained by adding i boxes to the Young

diagram of λ with no two boxes being on the same column.

So now maybe lets do some examples with Gr(2, 4). We’ll need to have F• and G• be

two general flags, and let H• be the flag you get by taking the intersection of the spaces of

F• and G•. For our example calculation, lets take the case of λ = (1, 1), then our Schubert

cell is Ωλ(F•) = {V | dim(V ∩ Fn−r+i−λi
) ≥ i} = {V | dim(V ∩ F2) ≥ 1, dim(V ∩ F3) ≥ 2}.

Lets look at what happens when we do Ω1 ·Ωλ. Diagrammatically our calculation looks like

· =

with no other options for summands on the right hand side. So we get that Ω1 ·Ωλ = Ω(2,1).

Note that Ω1(G•) = {V | dim(V ∩G2) ≥ 1, dim(V ∩G4) ≥ 2}, and so we have that

Ω1(G•) ∩ Ωλ(F•)

= {dim(V ∩G2) ≥ 1), dim(V ∩G4) ≥ 2} ∩ {dim(V ∩ (F2) ≥ 1), dim(V ∩ F3) ≥ 2}
= Ω(2,1)(H•) = {dim(V ∩H1) ≥ 1, dim(V ∩H3) ≥ 2}.

Now this calculation makes sense because two general planes F2 and G2 meet in a line, which

we have here be H1 and G4 = C4 and so H3 = G4 ∩ F3 is a 3 dimensional subspace. Now,

notice how there’s a choice of subspace H3 (it’s either F3 or G3), but it doesn’t matter in

the end because any choice we make would still be in the same class in cohomology.

Next, lets do the calculation of Ω2 · Ωλ for the same λ as above. So we have here

· = 0

because there is not possible way for us to add two boxes to without either going over

bounds or putting two boxes on the same column. So lets try to interpret this result in terms

of intersections then. Again, F•, G•, H• general flags.

Ω2(F•) = {dim(V ∩ F1) ≥ 1, dim(V ∩ F4) ≥ 2}.
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So looking at it in terms of intersection, we have that

Ω2(F•) ∩ Ω(1,1)(G•)

= {dim(V ∩ F1) ≥ 1, dim(V ∩ F4) ≥ 2} ∩ {dim(V ∩G2) ≥ 1, dim(V ∩G3) ≥ 2}
= ∅.

This makes sense because for general flags, we need to have that F1 ∩G2 = 0, so there can’t

be any subspaces V ∈ Gr(2, 4) that satisfies the first condition of both.

Alright, now lets try to draw the complete multiplication table.

+ 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

So we get that the above becomes our multiplication table.

2 Quantum cohomology

So now that we have a basic handle on regular cohomology of Grassmannians (Graßmannian),

we can move on to quantum cohomology. To start off, let us review some stuff about stable

maps and Gromow-Witten numbers. The degree of a map f : P1 → Pn is equal to the

number of points in f−1(H), where H is a general hyperplane in Pn. The degree of a map

f : P1 → Gr(r, n) is equal to the degree of the composition of f with the Plücker embedding

Gr(r, n) ↪→ P(
∧r Cn) (with the map being of course V 7→

∧r V which is a line). If we have

F•, G•, H• are three general flags, and λ, µ, ν are three partitions that define Young taleaux in

the r× (n− r) square, then these still give us the Schubert varieties Ωλ(F•),Ωµ(G•),Ων(H•).

Now we consider the moduli space of stable maps M = M0,3(d,Gr(r, n)). This is the

space of maps f : P1 → Gr(r, n) of degree d, satisfying some suitable stability conditions.

Now define ρi to be the i-th evaluation map M → Gr(r, n), with ρi(f) = f(pi). From here,

we define the Gromow-Witten number by

⟨Ωλ,Ωµ,Ων⟩d =
∫
M

ρ∗1(Ωλ) ∪ ρ∗2(Ωµ) ∪ ρ∗3(Ων).
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Some remarks about this definition:

• This number is 0 if |λ| + |µ| + |ν| ̸= dimM = dimGr(r, n) +
∫
Gr(r,n)

c1(TGr(r,n)) =

r(n− r) + nd.

• This number counts the number of degree d maps from P1 that sends 0, 1,∞ to the

Schubert cells Ωλ(F•), Ωµ(G•), and Ων(H•) respectively, up to automorphisms of P1.

Note also that such degree d maps can also be thought of as rational degree d curves.

• This number is well defined, i.e. does not depend on choice of general flags F•, G•, H•.

The quantum cohomology ring QH∗X = QH∗(X,Z) of X is a Z[q]-algebra which is

isomorphic to H∗X ⊗Z Z[q] as a Z[q] module. We still have Schubert classes σλ = Ωλ ⊗ 1,

and the multiplication is defined by

σλ · σµ =
∑
ν,d≥0

⟨Ωλ,Ωµ,Ων∨⟩dqdσν

where ν∨ is the dual partition to ν, i.e. ν∨ = ((n−r)−νr, . . . , (n−r)−ν1). It is a nontrivial

fact that this actually defines an associative ring structure. Further, this ring has a graded

structure with σλ having degree |λ| and q having degree n.

There are quantum analogs of the Pieri and Giambelli formulas, which will tell us more

about the structure of this quantum cohomology ring.

3 The span and kernel of a curve

Following Buch’s treatment of quantum cohomology, the technical tools to use here are the

span and kernel of a subvariety Y of X = Gr(r, n). The span of Y is the smallest subspace

of Cn that contains all the r-dimensional subspaces given by points of Y . The kernel of Y

is the largest subspace contained in all the r-dimensional subspaces given by points of Y .

Lemma 1. Let C be a rational curve of degree d in X. Then the span of C has dimension

at most r + d and the kernel of C has dimension at least r − d.

Proof. So let C be the curve given by the image of f : P1 → Gr(r, n), with deg f = d. Let S ⊂
On

X be the tautological/universal bundle on X. Then we know that f ∗S =
⊕r

i=1OP1(−ai)

with each ai ≥ 0 and
∑

ai = d. Now f is given by the inclusion
⊕r

i=1OP1(−ai) ↪→ On
P1

(since the inclusion we can think of as just locally precomposing by f). This inclusion works

by sending a point p ∈ P1 to the fiber over p of the image of this map.

Now if [s, t] are homogeneous coordinates on P1, then Γ(OP1(ai)) is generated by sections

of the form sjtai−j, 0 ≤ j ≤ ai. Now each map
⊕r

i=1OP1(−ai) → On
P1 is given by

ai∑
j=0

αjs
−jtj−ai 7→

ai∑
j=0

αjv
i
j,
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with vij being some vector in Cn (and of course repeat the above for all i). So then we get

that every vector is in the span of vij for all i, j. For each j there are 1 + ai vectors, and so

we have a total of
∑r

i=1(1+ai) = r+d. So we get that the span of Y has dimension at most

r + d. For the dimension of the kernel, note that we need
∑

ai = d, but if we don’t have at

least r − d of the ai = 0, say we have m < r − d zero, then we get that since each ai ≥ 0,

r −m ≤
∑r

i=1 ai = d, and so rearranging would get us that r − d ≤ m, which contradicts

our assumption in the first place.

If λ is a partition, d ≥ 0 an integer, then denote λ̂ to be the partition obtained by removing

the left d columns from the Young tableau of λ. I.e. we have that λ̂i = max{λi − d, 0}. In

pictures, this should be something like the following.

λ = , λ̂ = =

where the grayed out part means the d columns that we removed.

Lemma 2. Let C ⊂ X be a rational curve of degree d ≤ n− r and let W ⊂ Cn be an r + d

dimensional subspace containing the span of C. If λ is a partition such that C ∩Ωλ(F•) ̸= ∅,
then W belongs to the Schubert variety Ωλ̂(F•) in Gr(r + d, n).

Proof. Let V ∈ C ∩ Ωλ(F•). V ⊂ W because V is in C. But now, since V is in Ωλ(F•),

this implies that dim(V ∩Fn−r+i−λi
) ≥ i, and consequently, dim(W ∩Fn−r+i−λi

) ≥ i as well.

But, this is really the same as saying that W ∈ Ωλ̂(F•), since this is the conditions that

dim(W ∩ Fn−r+d+i−max(λi−d,0)) ≥ i, and the d’s cancel out.

We can say something similar about the kernel as well. If S ⊂ Cn is an r − d di-

mensional subspace contained in the kernel of C, then S ∈ Ωλ(F•) ⊂ Gr(r − d, n), where

λ = (λd+1, . . . , λr) is the result of removing the first (top) d rows. So we get that the condi-

tion that a curve meets a given set of Schubert varieties in X implies that the intersections

of related Schubert varieties in Gr(r + d, n) and Gr(r − d, n) are not empty, which is then

a statement about the usual cohomology of these spaces. So in some sense, we actually

reduced our question to the usual cohomology. This idea is actually sufficient to compute

Gromov-Witten invariants in many importantt cases!

Now lets move on to some of the quantum versions of the Pieri-Giambelli formulas.

4 Quantum Pieri formula

Theorem 1. Let λ be a partition contained in the r× (n− r) rectangle. Let p ≤ n− r, then

σp · σλ =
∑

σµ + q
∑

σν
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where µ ranges over all partitions such that |µ| = |λ|+ p and

n− r ≥ µ1 ≥ λ1 ≥ µ2 ≥ λ2 ≥ . . . ≥ µr ≥ λr,

and ν ranges over all partitions with |ν| = |λ|+ p− n and

λ1 − 1 ≥ ν1 ≥ λ2 − 1 ≥ . . . ≥ λr − 1 ≥ νr ≥ 0.

Some remarks before the proof that will be of interest later. Let ℓ(λ) be the number of

nonzero parts of λ. Then we have that ∑
σν ̸= 0

if and only if ℓ(λ) = r, since if not then we get some λi − 1 = −1 which is of course not

greater than or equal to zero; this is the same as saying that we want each λi ≥ 1.

Proof. So we look first at the q degree 0 term. This sum is gotten by the classical Pieri

formula. The classical case is equivalent to the following statement:

If α, β are partitions such that |α|+ |β|+ p = r(n− r), then

⟨Ωα,Ωβ,Ωp⟩0 =

{
1 if αi + βj ≥ n− r for i+ j = r and αi + βj ≤ n− r for i+ j = r + 1,

0 else.

So first why is the first sum equivalent to the above statement? Well first, clearly this

is because the above sum is the case when d = 0. Which again is the sum over µ for

n− r ≥ µ1 ≥ λ1 ≥ . . . ≥ µr ≥ λr. Remember in the definition of quantum product, we have

that

σp ∗ σλ =
∑
µ

⟨Ωp,Ωλ,Ωµ∨⟩0σµ +
∑
ν,d≥0

⟨Ωp,Ωλ,Ων⟩dqdσν .

So basically, what we need is to have ⟨Ωp,Ωλ,Ωµ∨⟩0 = 1 precisely when n − r ≥ µ1 ≥
λ1 ≥ µ2 ≥ . . . ≥ µr ≥ λr. First, lets prove that we need |µ| to be what it is. We want

p+ |λ|+ |µ∨| = r(n− r). Now |µ∨| = r(n− r)− |µ|, so rearranging gives us exactly what we

want. Ok, next we have that

µ∨
i = n− r − µr−i+1.

Now going back to the conditions on α, β, we look at λi + µ∨
j for i + j = r. In this case,

j = r − i, so then we get the condition

λi − µi+1 + (n− r) ≥ (n− r)

which is equivalent to λi ≥ µi+1. Now the condition λi + µ∨
j ≥ n − r for i + j = r + 1 is

equivalent to

λi − µr−j+1 ≤ 0.

j = r + 1 − i, so we get that λi − µi ≤ 0, so λi ≤ µi. So indeed this is equivalent to the

condition n− r ≥ µ1 ≥ λ1 ≥ . . . ≥ µr ≥ λr.
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Now look at the rank d ≥ 1 case. Suppose now that |α| + |β| + p = r(n − r) + nd,

i.e. the dimension counts match. Let C be a rational curve of degree d on X meeting each

Ωα(F•),Ωβ(G•),Ωp(H•) for general flags F•, G•, H•. Let W ⊂ Cn be a general subspace of

dimension r + d containing the span of C (so this is where we’re going to reduce to regular

Schubert calculus on Gr(r + d, n)). Now W ∈ Gr(r + d, n) lies in the intersection

Ωα̂(F•) ∩ Ωβ̂(G•) ∩ Ωp̂(H•)

where α̂, β̂ is the partition you get after removing the left d rows, and p̂ = max(p − d, 0).

Now, F•, G•, H• general implies that

|α̂|+ |β̂|+ |p̂| ≤ (r + d)(n− r − d) = dimGr(r + d, n),

i.e. they don’t intersect trivially. We also have that

|α̂|+ |β̂|+ |p̂| ≥ |α|+ |β| − 2rd+ p− d = (r + d)(n− r − d) + d2 − d.

This is because |α̂| =
∑r max(αi − d, 0) ≥ |α| − rd, etc. Now since d ≥ 1, this means that

d2 − d ≤ 0, and hence

(r + d)(n− r − d) + d2 − d ≤ (r + d)(n− r − d).

So the only case when the Gromow-Witten number ⟨Ωp̂,Ωα̂,Ωβ̂⟩d ̸= 0 is when d = 1 in this

case. d = 1 implies that we need ℓ(α) = ℓ(β) = r, since we have that

|α̂|+ |β̂|+ |p̂| = (r + 1)(n− r − 1)

= |α|+ |β|+ p− 2r − 1

= (|α| − r) + (|β| − r) + (p− 1),

so we need that each coefficient needs to be nonnegative.

So we get then that the quantum Pieri formula becomes equivalent to the case if |α| +
|β|+ p = r(n− r) + nd, then

⟨Ωα,Ωβ,Ωp⟩1 =

1
if αi+βj ≥ k+1 for i+ j = r+1

and αi+βj ≤ k+1 for i+j = r+2,

0 else.

Recasting this in terms of our partitions λ, p, ν, we get that we need

⟨Ωλ,Ωp,Ων∨⟩1 = 1.

Well, we need ν to be such that |ν∨| = r(n− r)− |ν|, and

|ν∨|+ |λ|+ p = r(n− r) + n
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which implies that |ν| = |λ| + p − n. So this is how we get the dimension count. Next, we

want to see how to recover our system of inequalities. So recall that we need

λ1 − 1 ≥ µ1 ≥ λ2 − 1 ≥ µ2 ≥ . . . ≥ λr − 1 ≥ µr ≥ 0.

We need to check whether this condition is equivalent to λi + ν∨
j ≥ k + 1 for i + j = r + 1

and λi + ν∨
j ≤ k + 1 for i+ j = r + 2.

So lets check the conditions: First for i+ j = r + 1, we get that

λi + ν∨
j = λi − νi + n− r ≥ n− r + 1,

so rearranging gives us that λi − 1 ≥ νi. Next for i+ j = r + 2, we get that

λi + ν∨
j = λi − νi−1 + n− r ≤ n− r + 1,

so rearranging here gives us that λi−1 ≤ νi−1 (e.g. ν1 ≥ λ2−1). So indeed this is equivalent

to the system of inequalities that we want.

So we get that

⟨Ωα,Ωβ,Ωp⟩1 = 0 ⇐⇒ ⟨Ωα̂,Ωβ̂,Ωp̂⟩0 = 0.

Here, the latter equality is just the classic Pieri rule. So we just reduced the quantum

problem back to the classical case.

Now, if ⟨Ωα̂,Ωβ̂,Ωp̂⟩0 = 0, then there does not exist a W , so actually C can’t exist. If

⟨Ωα̂,Ωβ̂,Ωp̂⟩0 = 1, then there’s only one W ∈ Gr(r + 1, n) that’s contained in

Ωα̂(F•) ∩ Ωβ̂(G•) ∩ Ωp̂(H•)

(the intersection has full codimtension so must be a collection of points). Since the flags are

general, W must lie in the interior of each Schubert variety, so in particular we have that

V1 = W ∩ F(n−r)−αr+r = W ∩ Fn−αr

and

V2 = W ∩G(n−r)−βr+r = W ∩ Fn−βr

all have dimension r. Also we have that V1 ∈ Ωα(F•) and V2 ∈ Ωβ(G•). Now we have

that Ωα(F•) ∩Ωβ(G•) = ∅ (I think because of some shenanigans with regular Pieri rule, not

completely sure), this implies that V1 ̸= V2, so then we have that dimV1 ∩ V2 = r − 1 (the

intersection increases the codimension by 1, so cuts down the dimension by 1). This implies

that the only rational curve of degree 1 in X that meets Ωα,Ωβ,Ωp is the line P(W/S) of

r-dimensional subspaces between S and W .

Now lets check that the regular Pieri rule actually holds like we claim it does. So first

checking the product

Ωp · Ωλ =
∑
µ

⟨Ωp,Ωλ,Ωµ∨⟩0Ωmu =
∑

Ωµ,
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with now µ being obtained in the regular way (i.e. adding p boxes to λ so that no two box

ends up in the same column. But now this implies that we get every µ such that

n− r ≥ µ1 ≥ λ1 ≥ µ2 ≥ λ2 ≥ . . . ≥ µr ≥ λr.

And we saw that the 2nd condition basically follows from the first by something like induc-

tion.

5 Quantum Giambelli

The quantum Giambelli is actually just the regular Giambelli formula with no modification.

We take the convention that σi = 0 for i < 0 and n− r < i < n.

Theorem 2 (Quantum Giambelli). σλ = det(σλi+j−i)1≤i,j≤r.

Proof. This proof just boils down to showing that the quantum product of Schubert cells

with only one nonzero row is the same as the regular product. I.e. we prove first that if

a1, . . . , ar are numbers between 0 and n− r, then

σa1 · . . . · σar = (Ωa1 · . . . · Ωar)⊗ 1.

We do this by induction. We prove first that if ℓ(λ) < r, then σi ·σλ involves no q terms and

no partitions of length greater than ℓ(λ) + 1. So why is this? Well by formula we have that

σi · σλ =
∑

σµ + q
∑

σν ,

where ν is such that λ1 − 1 ≥ ν1 ≥ . . . ≥ λr − 1 ≥ νr ≥ 0, |ν| = |λ| + i − n. But since

ℓ(λ) < r, no such ν can exist, since no numbers are greater than or equal to 0 and less than

or equal to −1. And in the above equation, the µ’s are gotten by just doing the regular

Schubert product, and in that product it is clear that we can’t add more than 1 row to the

Young tableau because then we would be adding more than one square to the same column.

So indeed the claim holds.

Well actually a stronger claim is possible. If λ, µ are partitions contained in the r×(n−r)

rectangle such that ℓ(λ) + ℓ(µ) ≤ r, then σλ · σµ = (Ωλ · Ωµ)⊗ 1.

Proof. If d ≥ 1 and ν is such that |λ|+ |µ|+ |ν| = r(n− r) + nd then any intersection

Ωλ̂(F•) ∩ Ωµ̂(G•) ∩ Ων̂(H•)

of general Schubert varieties in Gr(r + d, n) must empty since

|λ̂|+ |µ̂|+ |ν̂| ≥ |λ|+ |µ|+ |ν| − 2dr

= r(n− r) + nd− 2dr

= r(n− r) + (n− r + r)d− 2dr

= (r + d)(n− r)− dr

> (r + d)(n− r − d).
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So the codimension of the intersection is too high, and hence must be empty. Thus we get

that

⟨Ωλ,Ωµ,Ων⟩d = 0.

6 Some easy example computations

Here we do the case of Gr(2, 4). The possible partitions λ are now

λ =(1, 0) ,

(1, 1) ,

(2, 0) ,

(2, 1) ,

(2, 2) .

Lets try an easy example of σ(2,1) · σ2 =
∑

σµ + q
∑

σν . First we look at µ. We need

n− r ≥ µ1 ≥ λ1 ≥ µ2 ≥ λ2, i.e.

2 ≥ µ1 ≥ 2 ≥ µ2 ≥ 1

with the further restriction that |µ| = |λ|+ p = 3+ 2 = 5. This is just not possible, so there

are no q-degree 0 terms. Next look at ν. Here we need |ν| = |λ| + p − n = 5 − 4 = 1. The

system of inequalities we have is

λ1 − 1 ≥ ν1 ≥ λ2 − 1 ≥ ν2 ≥ 0, i.e.

1 ≥ ν1 ≥ 0 ≥ ν2 ≥ 0.

The only possible ν in this case would be (1, 0). So we find that

σ(2,1) · σ2 = qσ1.

So here we already get something interesting because the regular Schubert calculus would’ve

given us 0.

Next, try σ(2,1)·σ1 =
∑

σµ+q
∑

σν . Again first check µ. We need |µ| = |λ|+p = 3+1 = 4,

and our system of inequalities is

n− r ≥ µ1 ≥ λ1 ≥ µ2 ≥ λ2, i.e.
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2 ≥ µ1 ≥ 2 ≥ µ2 ≥ 1.

So the only option that fits these criteria is µ = (2, 2). Next we check the ν conditions. We

have that |ν| = |λ|+ p− n = 4− 4 = 0, so the only ν here is 0. So we have that

σ(2,1) · σ1 = σ(2,2) + qσ0.

Now what is σ0? We have that Ω0(F•) = {dim(V ∩F2−0+1) = dim(V ∩F3) ≥ 1, dim(V ∩
F2−0+2) = dim(V ∩ F4) ≥ 2} = Gr(2, 4). Alternatively, one could’ve noticed that |0| =
codimΩ0 = 0. Actually, σ0 = 1, so the above product is actually

σ(2,1) · σ1 = σ(2,2) + q.

Next, lets do one where we need the Giambelli rule as well. The only such case is really

σ(1,1) · σ(2,1). Using the Giambelli rule, we get that

σ(1,1) = det(σλi−j+i)1≤i,j≤r=2

= det

(
σ1−1+1 σ1−2+1

σ1−1+2 σ1−2+2

)
= det

(
σ1 σ0

σ2 σ1

)
= σ1σ1 − σ2.

So then our product becomes

σ1σ1σ(2,1) − σ2σ(2,1).

Well, we just computed σ2σ(2,1) = qσ1. We also computed σ1σ(2,1) = σ(2,2) + q, so we need to

compute next

σ1(σ(2,2) + q).

σ1 ·σ(2,2) =
∑

σµ+q
∑

σν . We know that no µ’s are possible because of regular computations

in cohomology. So now we just need to check the ν conditions. We have that |ν| = |λ|+p−n =

4 + 1− 4 = 1, and

1 ≥ ν1 ≥ ν2 ≥ 0.

So the only possible ν is (1, 0). So we see that σ1σ(2,2) = qσ1. Putting everything together

then we see that the final product is

(qσ1 + qσ1)− qσ1 = qσ1.

Interesting computation.

7 Converting from subsets to partitions

Next the question is how do we convert from subsets I ⊂ [n] to partitions λ. Well, we have

that for a flag F•, we have that

Ωλ(F•) = {V | dim(V ∩ Fn−r−λi+i) ≥ i},
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while for I = {i1 ≤ i2 ≤ . . . ≤ it}

ΩI(F•) = {V | dim(V ∩ Fia) ≥ a, ia ∈ I}.

So from here, it seems that the formula is clear. We set a = i and check that

n− r − λa + a = ia,

so actually we get that n − r − ia + a = λa, so just do the same thing. So the conversion

isn’t bad at all.

8 Relating to inequalities for unitary product problem

So then the next step is to relate these quantum cohomology calculations to the inequalities

determining the unitary product problem.

8.1 Rank 4 case

So lets say we have V unitary-bundle of rank 4. We want to look at subbundles. So let

E ⊂ V be a subbundle of rank r and degree d. These subbundles are of course equivalent

to a map f : P1 → Gr(r, n). From here we have to break down the problem into various

subcases.

1 rankE = 3

This is the case when we’re looking at maps f : P1 → Gr(3, 4) ≃ P3. I guess, we should

do the quantum cohomology table here as well. This is the case of an 3 × 1 box. So

our partitions will be

λ = (1, 0, 0) ,

(1, 1, 0) ,

(1, 1, 1) .

Alright, time to write down the quantum product table like before.

σ(0,0,0) = 1 σ(1,0,0) σ(1,1,0) σ(1,1,1)

σ(0,0,0) = 1 1 σ(1,0,0) σ(1,1,0) σ(1,1,1)

σ(1,0,0) σ(1,0,0) σ(1,1,0) σ(1,1,1) q
σ(1,1,0) σ(1,1,0) σ(1,1,1) q qσ(1,0,0)

σ(1,1,1) σ(1,1,1) q qσ(1,0,0) qσ(1,1,0)
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Now, lets write down the conversion to subsets. The conversion formula is n−r−λi+i =

Ii, which translates to 1− λi + i = Ii.

(0, 0, 0)⇝{2, 3, 4},
(1, 0, 0)⇝{1, 3, 4},
(1, 1, 0)⇝{1, 2, 4},
(1, 1, 1)⇝{1, 2, 3}.

And then the dual conversion is I∨i = i+ λr−i+1 = i+ λ3−i+1.

(0, 0, 0)∨ ⇝{1, 2, 3},
(1, 0, 0)∨ ⇝{1, 2, 4},
(1, 1, 0)∨ ⇝{1, 3, 4},
(1, 1, 1)∨ ⇝{2, 3, 4}.

So from here in the rank 3 subbundle case, we can write down some of the inequalities

from the above information. For a degree 1 inequality, we can look at σ(1,1,1) ·σ(1,1,0) =

qσ(1,1,0). This translates to

⟨σ(1,1,1)(F•), σ(1,1,0)(G•), σ(1,1,0)∨(H•)⟩1 = 1.

In the subset notation, this translates to

⟨σ{1,2,3}(F•), σ{1,2,4}(G•), σ{1,3,4}(H•)⟩1 = 1.

This then translates to the inequality

a4 + a3 + a2 + b4 + b3 + b1 + c4 + c2 + c1 ≤ 1.

For a degree 0 inequality, we can use σ(1,0,0) · σ(1,1,0) = σ(1,1,1). This translates to

⟨Ω(1,0,0)(F•),Ω(1,1,0)(G•),Ω(1,1,1)∨(H•)⟩0 = 1.

This then translates to

⟨Ω{1,3,4}(F•),Ω{1,2,4}(G•),Ω{2,3,4}(H•)⟩0 = 1.

This gives us the inequality

a4 + a2 + a1 + b4 + b3 + b1 + c3 + c2 + c1 ≤ 0.

2 rankE = 2

This case is the interesting one, because now we are looking at maps f : P1 → Gr(2, 4),

which is not a projective space. Here, we do actually need to use the Schubert calculus.

So maybe we should just write out all the products in QH∗Gr(2, 4). So lets write down

the table. We already know some of the products.
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σ(0,0) = 1 σ(1,0) σ(2,0) σ(1,1) σ(2,1) σ(2,2)

σ(0,0) = 1 1 σ(1,0) σ(2,0) σ(1,1) σ(2,1) σ(2,2)

σ(1,0) σ(1,0) σ(2,0) + σ(1,1) σ(2,1) σ(2,1) σ(2,2) + q qσ(1,0)

σ(2,0) σ(2,0) σ(2,1) σ(2,2) q qσ(1,0) qσ(1,1)

σ(1,1) σ(1,1) σ(2,1) q σ(2,2) qσ(1,0) qσ(2,0)

σ(2,1) σ(2,1) σ(2,2) + q qσ(1,0) qσ(1,0) q(σ(2,0) + σ(1,1)) qσ(2,1)

σ(2,2) σ(2,2) qσ(1,0) qσ(1,1) qσ(2,0) qσ(2,1) q2

Next up, we want to convert the partitions into subsets I ⊂ [n] each of cardinality 2.

Recall from the above that the conversion is given by Ii = n − r − λi + i So writing

them down, we get that

(0, 0)⇝ {3, 4},
(1, 0)⇝ {2, 4},
(2, 0)⇝ {1, 4},
(1, 1)⇝ {2, 3},
(2, 1)⇝ {1, 3},
(2, 2)⇝ {1, 2}.

Next up, we also want to understand what the dual subsets should look like. Writing

them down, we get the following table.

(0, 0)∨ ⇝ {1, 2},
(1, 0)∨ ⇝ {1, 3},
(2, 0)∨ ⇝ {1, 4},
(1, 1)∨ ⇝ {2, 3},
(2, 1)∨ ⇝ {2, 4},
(2, 2)∨ ⇝ {3, 4}.

Alright, now from here we should be able to just write the inequalities down, which

sounds incredibly tedious. But there is a good way to write them all down from just

looking at the table. There are too many to write completely down though. Maybe

lets just write down some of the interesting ones. From σ(2,2) · σ(2,2) = q2σ(0,0), we get

that the Gromow-Witten number

⟨Ω{1,2}(F•),Ω{1,2}(G•),Ω{1,2}(H•)⟩2 = 1,

which would imply the inequality

a4 + a3 + b4 + b3 + c4 + c3 ≤ 2.

From σ(2,0) · σ(2,1) = qσ(1,0), we get that

⟨Ω{1,4}(F•),Ω1,3(G•),Ω1,3(H•)⟩1 = 1,
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which gives us the inequality

a1 + a4 + b2 + b4 + c2 + c4 ≤ 1.

For a degree 0 inequality, we have that σ(1,0) · σ(1,1) = σ(2,1), which would give us that

⟨Ω{2,4}(F•),Ω{2,3}(G•),Ω{2,4}(H•)⟩0 = 1.

This would give us the inequality

a1 + a3 + b3 + b2 + c1 + c3 ≤ 0.

3 rankE = 1

This is the case where we’re looking at maps f : P1 → Gr(1, 4) = P3. Lets write down

the quantum cohomology table here as well. These are 1 × 3 boxes, so the partitions

are

λ = 1 ,

2 ,

3 .

Now obviously, Gr(1, 4) ≃ Gr(3, 4) ≃ P1, so we should expect to see the same table.

But, let’s check the computations out explicitly anyways to see what’s up.

σ0 = 1 σ1 σ2 σ3

σ0 = 1 1 σ1 σ2 σ3

σ1 σ1 σ2 σ3 q
σ2 σ2 σ3 q qσ1

σ3 σ3 q qσ1 qσ2

In this case, to convert to subsets I ∈ [n] from λ, our formula becomes simply I =

1 + λ1+1−1 = 1 + λ1. So doing the conversion table, we would get

λ = 0⇝ {1},
1⇝ {2},
2⇝ {3},
3⇝ {4}.

So here, for a degree 1 inequality, we can do something like σ1 ·σ3 = qσ0. This translates

to

⟨σ{2}(F•), σ{4}(G•), σ{4}(H•)⟩1 = 1,

15



which translates to

a3 + b1 + c1 ≤ 1.

For a degree 0 inequality, we can try σ2 · σ1 = σ3. Here we get

⟨σ{3}(F•), σ{2}(G•), σ{1}(H•)⟩0 = 1.

Then here we get the inequality

a2 + b3 + c4 ≤ 0.
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